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A new multigrid method for the solution of hyperbolic systems of
conservation laws (such as the Euler equations of compressible inviscid
flows), combined with higher-order upwind approximation, is con-
structed. The novelty of the method lies in the introduction of an
upwind transfer operator between two successive grids. First, the
efficiency of the method is investigated for a scalar linear advection
equation in one dimension of space using Fourier analysts, An exten-
sion to an unstructured multigrid method is then proposed. Numerical
results for two-dimensional flow computations including hypersonic
flow simulation are presented.  © 1993 Academic Press, Inc.

1. INTRODUCTION

The general multigrid algorithm has now proved to be
one of the most efficient methods of accelerating the con-
vergence of a numerical scheme to the steady-state solution
of a system of non-linear equations. The basic idea is to
compute approximate corrections obtained on coarser
meshes and transfer them to the fine grid solution. These
corrections, derived from the problem equations, do not
affect the accuracy of the fine grid solution but significantly
increase the rate of convergence of the basic numerical
scheme. This method was first applied to solving eliiptic
problems where the theory is now well established [8, 20].
Although theoretical resuits remain very poor for hyper-
bolic problems, successful applications of the muitigrid
method have been performed. Among others, Ni [23] and
Jameson [10] have developed two reference muitigrid
methods to soive the Euler equations in the framework of
structured meshes.

Today, the use of unstructured meshes is widespread [ 11,
19, 25, 9, 30] in the CFD community to solve the steady-
state Fuler equations. These methods are now competitive
compared to the available structured-mesh solvers and
efficient vectorization can be achieved with coloured graph
algorithms [29] on supercomputers. The efficiency of the
method has been demonstrated when combined with struc-
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tured meshes; therefore the need to develop such algorithms
in the unstructured context has emerged.

The multigrid method used with the structured-mesh
solvers relies on nested meshes; this property can no longer
be preserved in our context because the quality of the finest
grid will heavily depend on the definition of the coarse level
even if subdivisions of the elements are performed only in
selected regions of the domain (combined with adaptive
mesh enrichment) {26]. One must design a more general
non-linear multigrid algorithm. Such an algorithm operat-
ing on a sequence of completely unrelated unstructured
coarse and fine meshes has been deseribed in [21] in the
two-dimensional case. It relies on a centered finite-volume
discretization of the Euler equations with added artificial
dissipation, the integration in time being carried out by a
fully explicit five-stage time-stepping scheme. Grid transfer
operators use the shape functions associated with a
piecewise linear approximation in each element.

An alternate approach is to generate coarse levels from an
arbitrary unstructured triangulation, taking advantage of
the finite volume discretization on a dual mesh partitioned
in control volumes. This procedure has been successfully
applied [14], combined with the explicit second-order
accurate upwind nodal approximation described in [7].

Recently, Leclercq er all [15] developed a multigrid
method called the GM (geometric multigrid) method by
retaining the approach of Mavriplis and Jameson [21],
which uses a sequence of completely unrelated unstructured
meshes, and by extending this idea to the aforementioned
second-order accurate upwind approximation, in two and
three dimensions.

The methods mentioned above have proved to be very
efficient in solving transonic and supersonic problems, but
show a lack of robustness when dealing with high Mach
number flow simulations. Furthermore, when using the GM
method in some situations, the residual enters a limit cycle
of oscillations probably due to the inability of the method to
damp the high frequencies of the error in a satisfactory way.
It is believed that one of the reasons for these failures lies in

0021-9991/93 §5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



330

the fact that transfer operators, from one grid to another,
are purely interpolation operators designed for elliptic
problems and do not take the hyperbolicity of the Euler
equations into account. This aspect was first investigated by
Sanders [27] and some developments in this direction have
been performed by Koren [12].

This paper discusses an attempt to design better adapted
transfer operators in 2 multigrid algorithm in order to solve
hyperbolic problems. Thus, we will particularly analyze
some upwind transfer operators.

First, we present in Section 2 the multigrid algorithm
with general transfer operators. Then in Section 3, the sen-
sitivity of the transfer operator upwinding for accelerating
an explicit multistage iterative solver is studied on a one-
dimensional linear advection equation through a Fourier
analysis, This study will demonstrate the superiority of
introducing upwinding. In Section 4, the adaptation of this
technique to the two-dimensional GM method is proposed
in the unstructured mesh context. Finally, two-dimensional
results with the new CM (characteristic multigrid) method
will be presented to illustrate the extended capacities of the
muitigrid algorithm.

2. MULTIGRID ALGORITHM—GENERAL CASE

The purpose of this section is to describe, in a general pat-
tern, the non-linear multigrid method FAS (full approxima-
tion scheme) [2, 3, 81, and to introduce the notations and
key words that will be used through out this paper. The
description is restricted to the case of two computational
grids. We consider a general non-linear steady-state
problem in a domain 2 < R% with boundary I

Flw(x})= 8,

+ boundary conditions on

xef2

(1)

where w: BY - R”and F- R" - R™

It is well known that the solution of problem (1) can be
considered as an asymptotic particular sclution of the
following time-dependent problern:

0
aw(x, 1)+ Flwix, 1))=S5, teR™, xef

+ boundary conditions on I {2)
w(x,0)=nx), xe@ (initial data).

In the framework of multigrid method, we assume that
X,, Y., Xy, and Y, (dx,> 4x,) are the functional
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discretization spaces for w,, F.{w,), wg, and Fg(wy),
respectively. After discretization, probiem (2) becomes

0
T Walt) + Ffwu(n)) =S4, teR™

dr

+ boundary conditions on I

(3)

w(0)=wh (initial data}.

The scheme used to solve (3) is called the basic scheme on
grid G, and denoted by BS,: X, - Y,.

We should define the three transfer operators I, .,
I, 4. and I, ., which are needed for the restriction of
variable w,, the restriction of residual (F,(w,)—S,), and
the prolongation of coarse grid correction C,;, respectively.
These definitions are summarized in Fig. 1.

Two-Grib ALGORITEM. Let wi=w,(¢"Je X, be the
solution of (3) at the time #". Hereafter we describe one cycle
of the multigrid algorithm which computed the new iterate
wh ™! from wi.

1. An approximate solution w§e X, is compuied by
applying v, iterations of the basic scheme BS,:

— "
Wy =Wy,

= BS,(w, ), !

v=1,.,v;,

{
a_ oV
We=w,',

2. The problem on the coarse grid can be written in a
form similar to that of (3) on the fine grid:

&
— Wat Flwy)=358, in the domain Q

ot
+ boundary conditions on I”

(4)

we(0)=wh =1, _ (w5 (initial data),

where the source term Sy, is defined as
Sp= FH(W?;) - ih._. alFnlwy) —~ 85)

Let BS,: X, — Y, denote the basic scheme associated with
problem (4).

X P > Yi

—-

Fine grid G,

Igal | Taen I.m

Xn fu » Yy

Coarse grid Gy

F1G. 1. General transfer operators.
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3. After applying vi, iterations of the basic scheme BS,,,
we get an approximate solution w¥ € X, to problem (4):

[ w—1 _ 1
wh,=BSh(wiy '), v=1,..,v,,

1
wh=w
4. The coarse grid correction is then defined as

PR O N
Cy=wh—wi,=wh—1,_ 4w}

5. Finally, the coarse grid correction is interpolated on
the fine level and added to the approximate solution w5 € X,
to obtain the corrected solution wj € X,

whp=wi+ 1, (Cy)

Before updating the solution wj*'e x,, v} iterations of the
basic scheme, acting on X, are performed:

=0 _  ..¢c
Wy=Wwg
T4 v—1 _ 2
Wy =B, (w; ), v=1,.,v;,
n-#-l_--v2
Wy =Wy

Remark 1. The parameter v; plays an important role
when the number of computational grids is greater than
two, The effect of this parameter on the global efficiency of
the method will not be studied in this paper {in practice, we
will take v =0).

Remark 2. Extending the above two-grid algorithm to
the muitigrid case is straightforward using induction on the
number of grids.

FuLL-MUuLTIGRID  ALGoriTHM. The  full-multigrid
method is a combination of the multigrid algorithm
described previously and the successive refinement tech-
nique. In case of N computational grids, from the coarsest
one G, to the finest one G, the algorithm can be written as
follows:

1. Single-grid solution on grid G,. From the initial
solution wi, an approached solution (final solution) w/ is
obtained by applying the single grid scheme.

2. For /=2 to N the following process is performed:
From the initial solution on level /, defined as the interpola-
tion of the final solution on level / — 1,1e, wi=1, _,(w/_ %
the final solution on level /, w/ is obtained by applying the
[-grid scheme.

The final solution of the algorithm is thus w4, with the
above notations.

331

3. ONE-DIMENSIONAL CASE-FOURIER
ANALYSIS

The damping of the high frequencies or the highest
frequency of the error is a necessary property of the basic
scheme to be used as a smoother of a multigrid method. The
purpose of this section is to examine the damping properties
of a four-stage scheme which is assoctated with an upwind
second-order accurate space approximation in order to
solve hyperbolic problems. The resulting basic scheme will
be used later to solve the steady-state Euler equations with
a pseudo-unsteady multigrid method in a finite element con-
text. The model problem is the scalar linear advection equa-
tion, which is usually considered to analyze the stability and
the precision of hyperbolic solvers [32]. We wili obtain the
scheme amplification factor by Fourier analysis, i.e., by the
Fourier transform of the basic scheme operator. We will
compare results obtained when considering the single-grid
scheme amplification factor only, with results given by a
genuine analysis of the amplification factor of an ideal two-
grid cycle {(convergence on the coarse grid is then supposed
to be complete). The analysis of the single-grid amplifica-
tion factor is performed in order to select the optimal (in
some sense) muiti-stage scheme of the multigrid method.
Two criteria are considered; optimization is made with
respect to the damping of higher frequencies [10, 18, 31]
and to the highest frequency [13].

On the other hand, the study of the amplification factor
of the ideal two-grid cycle allows the direct optimization of
the coefficients of the multi-stage scheme. Furthermore, this
optimization takes into account the transfer operators and
gives an optimal multi-stage scheme for any multigrid
method. This study can be related to the work of
V. Couailler ef al. [4,5] for a two-grid V-cycle of a
predictor—corrector Lax-Wendroff scheme, of Jameson
[107] and of Mulder [22]. We will then try to improve the
two-grid scheme (through its amplification factor) by
modifying the transfer operators definition.

3.1. Model Problem

We consider the scalar linear advection equation (with
ce ®*) in the interval @ < R with boundary I

iw(x, t)+c;%w(x,r)=0, teR*

xelR,
ot

(5)

+ boundary conditions on I~
w(x, 0)=w%x) (initial data).
Remark 3. Problem (5) is equivalent to problem (2}
with:

Fowle )= w(xv,1), 520, QcR
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We assume that w(x, ¢) is periodic, with a period equal
to one, so the discretization domain is reduced to the
mterval [0, 1].

To discretize problem (5), spatial upwind approximation
and time integration should now be specified. Let G,
be a standard discretization of [0, 1] with space-step
Ax,=1/n,, n,eN*, we denote by x;=jAx, the nodes
and by C,=1x,_ 5, X;.10[ the cells (with x,,,,=
X+ dx,/2), forj=0, .., n,

We denote by ¢t =max(c,0) and ¢~ =min(c, 0)
{c=c*+c¢7). Use upwind differencing for the spatial
derivative, and integrate Eq.(5) on C,, {for j=0,...n,);
then obtain the semi-discrete scheme,

0 1

)=———R,
a" wylt)= dx,
Weo = We, {periodicity} {6)
W, (0) =w] (initial data),

where w, (1) denotes w(
as:

X;, t) and the residual R, is defined

def

Ry=cPlw, f(0)—wo (0]

+e lwg 0 —we ()] (7)

The solution w,(t) is a priori, not continuous at nodes
X; 411 Dut its limits are known:

lim  wi(x, t);
X<Ij11]1

XXl (8)

)= hm wix, t
w= im0
X=X

Ws—ftu_z(l) =

For first-order space accuracy, w.(r} is taken as a
constant on the cell C,; the limits in (8) are then given by

W8j+1,'2(t) = WgJ(t)

+
ngu,'z(t] ngu(t)‘

(9

[

For higher-order space accuracy, a MUSCL approach
[16] is considered (w,(¢) is taken as piecewise linear on
each cell C ); the limits in (8) are then given by the formulae

Wi (=g O+ D ()= wy_(1)]
+ 1—}'5 [y . (1) = w, (1)]
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1~
Dl -
[ Ei+1 }

w;'-+1,‘2(t)=w‘g +l(t)— ngq.}(!)]

1+1c (10)

wy, (1)1,

where the parameter k € [ — 1, 1] can be chosen to select the
level of the interpolation (x = 1 corresponds to a central dif-
ferencing, k = —1 corresponds to a second-order accurate
fully upwind differencing, k =0 corresponds to a second-
order accurate half-upwind (Fromm) differencing, x =1}
corresponds to a third-order accurate upwind differencing
(6,177}

The time integration is performed with a four-stage time-
stepping scheme. The solution wi*' = (w, {t"“)) = 1.y 15
obtained from the solution w} —(_ g)(t”))j_l‘_,”,, with the

iterative process,

W(O]der "
ﬁ:f’:w;‘”—agkj—;iRg(w;"*”), k=1,.,4 (11)
g
w;+1d==fw§u’
where «, e [0, 1] for k=1, ..,3 and a,, =1 are the time-

stepping scheme coefficients associated with the approxima-
tion on the grid G,. Process (11) constitutes the basic
scheme of the multigrid method.

3.2. Fourier Analysis

We are interested in analyzing the behavior of the
multigrid method amplification factor with a four-stage
time-stepping as a basic scheme. Let us carry out a study
based on a Fourier analysis and insert harmonic data:

The residual of Eq. (7) becomes R, = ()c| 2,(8,) W, ), where

2,(8,) € C results from relations (12] {obtained from (9))
and (13) (obtained from (13)) for first order and higher
order spatial accuracy, respectively,

First order:

2(0;) = [[1—e-"’z]+i let-11 (12)
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Higher order:

(8, = (1= e~

¢ et

1— . 1 .
x(1+—4§(1—e""ﬁ)+ +x(e'9f<—1)>
F (e 1)
¢]
1— . 1 .
x(l— 4K(e'9ﬂ—~ :K(l—e"ﬁa)). (13)
The iterated solution w;** is then given by the scalar
equation

where g.(«,. 6, 8,) is the Fourier transform of the basic
scheme operator BS, and can be written as a polynomial of
2,(0,),

o B)=1—0,z.(8,)+a,0

g2, f.)

g3gg(

—a, agsagzg((? }

0 %y %y,

ot 240,), (14)

where o, = |c|(4d1,/4x,) denotes the Courant-Friedrichs—
Lewy (CFL) number,

The single-grid amplification factor &/ #(a,,0,,0,)
is then defined as the modulus of the complex term
Belag, o, 8.).

To estimate the amplification factor of one multigrid
cycle, we have to extend the previous analysis to all steps of
the multigrid algorithm. To make it clearer, we will consider
in the following the two-grid method relying on a fine grid
G, (Ax,=1/n,, n,eN* n, an even number) and a coarse
one Gy (4x,;=24x,), deduced from G, by eliminating
odd-numbered nodes (grids G, and G, are nested). We
then define transfer operators in a general form:

« I, ., used for the restriction of w,. We consider the
simplest restriction:
for p=0,..,n,/2 (15)

L aWh)op = Wy,

o I, ., used for the restriction of residuals R,. This
operator has to be conservative. The residual at coarse node

581/104/2-4
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Nap-2 Nayp-1 Naprs

v NVAN

—&
.

Nrpt1
Fine grid G,

Coarse grid G g

FIG. 2. Operator i, ,in 1D.

N, is a weight-average of the residuals at fine nodes N, _ 4,
Ny, and Ny, e

TkHH(Rh)Zp =a, Rh2p—l + Rt a_Ryzpi

for p=0,..,n,/2, (16)

where the coefficients @, and «  (€[0,1]) are inter-
polation weights such that a, +a_=1 to ensure the
conservatton. This transfer is sketched in Fig. 2.

« I,,..,. used for the prolongation of corrections (C ).
The interpolation operates differently for odd-numbered
and even-numbered nodes,

IHHh(CH]Zp:(CH)Zp for p=0,.,n,/2
IH»—t}r(CH)Zp-}-l=b+CHzp+b—CH2P.;3 (1?}
for p=0, .. (n,-—1)/2,

where the coefficients &, and b _
tion weights such that b, +&_
in Fig. 3.

As it appears in the definition of the transfer operator
I, ., (17), the correction interpolation induces two
different schemes: one associated with even-number nodes
and the other with odd-number ones. Thus, we will study
the scheme associated with a couple of nodes (N,,, Ny, 1)
for p=0, .., (n,— 1)/2. We will follow the two-grid scheme
algorithm as it is described in Section 2, inserting a couple
of harmonic data,

(e [0, 1]) are interpola-
= 1. This transfer is sketched

no_an ,i2pbh
Uy, =, €
~n :(2p+l]8;,
Vigpi = 0 €
f A0 -0
forp=0, .., {n,—1)/2, with &, =8,.
Nagg Nopy Nipi1 Nagya

Fine grid G,

rd NZAN

Coarse grid Gy

FIG. 3. Operator I, ,in 1D.
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The objective of this analysis is to determine the (2x2)
matrix MG such that

an+1
(“” )=MG(a+,a_, By bty Grgy %y Gny O)

v~n+l
uy,
Uy

h
Let us introduce the following notations:

» Writing z,(@,} (resulting from relations (12) and (13)
(with g=~h) for first and higher order space accuracy
respectively), under the form z,(8,)=3X,n,e“" leads to
the definition of both coefficients,

i(2p)8
Ze;.(gh) =Z ’szel( 710
r
Zo{01) =2 Mypq @I,
P

where z,,(0,)+z,(8,)=z,(6,). Then we denote by
Z.(a,, 6,, G,) the (2 x 2) matrix with the structure:

za0:)  7,,(0,)

Z 9 =( ep A Oh )

h( h) Znh(gk) Ze;,(gh)

« Writing g,(x;, ¢,,0,) (resulting from relation (14)
with g=~h), under the general form g, lx,,0,,8,)=
>, £, 0,) €% leads to the definition of both following
coefficients:

ge;,(aha Gh, Gh) =z 52}5(&&! Uh] ef(ZP)ﬂk
P

oy, 04, 8)) =Z Eapv1ftn, 04) g+ Do
P

where g, (%, 0. 0,) + g%, 04, 0,) = gulety, 04, 8,).
Then we denote by G{z,, o, #,) the (2 x 2} matrix with
the structure:

ge;.(o:h’ Tp, gk) go;,(d'»‘ﬂ Gps eh))

Gloy, 64,0 =(
Ah: s O4) 30,,(0(1” G4y 05) ge,.,({xh, Gps 84)

Using the notations introduced in Section 2, we can write

ﬁn+l 2 i<
( A::+ 1) =[G,{a;, 0,.8,))" ( »?)
v, Uy

7

(G (s, 0y, 0)]% m) N zwm,,}]

k

= [G(tss 0, B,)]"

i 1 .
st )]

(18)
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where the approximate solution (i}, §§) is given by

(’1‘::) — [y, o5, B)]" (i‘fz)
% &}

and the coarse grid correction €, can be expressed as

(19)

= [l 04 0) ]
el 24(0,)

3 P l:ld Z,(8,) (;E)]
b

_ 1 [gn(2s, 04, 04)1
z2,404)

Cum

g

A

(1, a. e~ 4 a_ ™) Z,(6,) (v) (20)

where 8,=20,,.

Remark 4. In the previous expressions, a division by
zero can occur only if k = I {corresponding to the centered
scheme).

Remark 5. For an ideal two-grid cycle (i.e, v}, so that
convergence on coarse grid can be supposed complete), we
obtain

0, for 8,=0ocr 0,=2n
=YL § (R for 8,€70,20]
(el 2@y ok 0T P € I SR

Using relations (18)-(203, the amplification matrix is
then given by
MG(a,,a_.b, ., b_,ay 04,040, 8,)

1 glau, oy, 0u) 1
ZH(BH)

= [Gulay, o4, gh)]*'i X [Iz—

1 . |
X (b e 4 b e“"') (La, e=® +a_ ) Zh:‘
+ —

x [Gloyr 01, 0,015,

where 1, is the (2 x 2) identity matrix.

The amplification factor of the two-grid method is then
defined, for any wave number 8, € {0, n], as the maximum
between the two eigenvalue modules of the matrix MG.

3.3. Characteristic Multigrid Method in 1D

We should specily the values of the cocﬂicient§ a,,a_,
b,, b_, defining the interpolation operators I, , and
I, respectively. These coefficients are taken as equal to
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1 in the standard muitigrid method (that we call geometric
multigrid or GM method) since fine grid nodes are middle
points of two coarse grid nodes. This definition is in fact
more restrictive than the necessary and sufficient conditions
a,+a_=1,b,+b_=1 Weintroduce the characteristic
multigrid (CM) method based on the new coefficients:

c

I

[
a, , a_=—
¢

(21}

+
¢

or/and . _

c

—, b_=—.

¢

C

b.

1

The definition (21) corresponds to an upwinding in the
characteristic direction.

Remark 6. Both multigrid schemes obtained with one
characteristic operator and one geometric operator are
equivalent for the 11> linear case.

We will denote the different combinations and their
respective amplification factors by:

GM — ﬁgGM(uh! G, g.ﬁ)

geometric residual restriction—geometric correction inter-
polation;

CM - of F(%, 51, 6,)

B30 w.uB .58 8.60 8.7 .89 a.9 i.80

.20

2.8
T

v.08
—

T e - S|

) I B a8
Maximum of AF{ea,an, 00} for 64 € [§, 7]

Value of A7 y(an, 74, x)

Maximum of 47 car{aa,on, Pa) for 8, € [0,x]
Meaximum of AF cas(an, o, 8,) for 8, € [0, 7]
Maximum of AFcoa(as, oa, 0} for fx € [0, 7]

e
®
©
n

FIG. 4. Amplification factors as a function of Courant number with
a, =011, a,, =0.2766, @, =05, a,, = 1. Second-order space approxima-
tion, =10,
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characteristic residual restriction-geometric correction
interpolation or geometric residual restriction—charac-
teristic correction interpolation;

CCM - A Foopml@y, 04, 04)

characteristic residual restriction—characteristic correction
interpolation.

As an extension to the case of a system of nonlinear hyper-
bolic equation in two dimensions can be achieved and will
be proposed in Section 4. Some numerical tests have been
performed to determine which one is the best adapted to
this extension.

3.4, Numerical Tests in 1D

We consider an ideal two-grid cycle, consequently, multi-
grid amplification factors do not depend on coarse grid
multi-stage parameters ((«,,),_, . and o) any longer
and the space approximation is always supposed to be
second-order accurate with x =0.

At first, we recall two four-stage schemes which were
optimized by a single-grid analysis with respect to two difl-
ferent criteria. The first one, proposed by M. H. Lallemand
[ 1317, fulfills the three following conditions:

1. The highest frequency {8, = r) is completely damped.

2. The value o/ (o, a4, 8, = 1) remains “small” in the
{Courant number) interval [0, ,o, ], where g, is as
“large™ as possible

B.ug 8.58 b.68 a.mw G.80 .99 1.80

a.38

@20

Values of AF ,(ca, o, 00)
Values of A7 gas(an, 7, fa)
Values of AF car(an,on, )
Values of AFconglan,on,th)

618

+

FIG. 5. Amplification factors as a function of the wave number with
o,=191, o, =011, a, =02766, , =03, a, =1. Second-order space
approximation, & = 0.



336

3. The scheme is second-order accurate in time (ie,
ay, = 0.5) and leads to the coefficients:

o, =0.11, a, =02766, «, =05, op=191.

(22)
The second one is the optimal four-stage scheme regard-

ing the damping of the high frequencies (n/2 <8, < x) built
with the method proposed by van Leer et al. [18] and gives

4, =0.14, «, =02939, «, =0.5252,

Ap, = 1)

Uy = 1, F,= 1.4.
(32)
Later, we have optimized the four-stage scheme coef-
ficients, using the aforementioned multigrid analysis, with
respect to the criterion: find «,,, 4,,, %,,, and o, such that
maxg, ¢ ro.x] & FPuc(®y, 05, 05) is minimal.
Corresponding to cach multigrid method described
above, we have found the coefficients:

GM, «, =0.1602, a;,=0.3297, o, =0.5748,
ay,=1,6,=132
CM, o, =0.1427, ¢, =0.3026, x,,=0.5311,
oy =1, 6,=139
CCM, «, =0.1372, «,,=0.2617, o, =0.5245,
op,=1,0,=14

(24)

(25)

(26)

which are quite close to those of van Leer e af. (23).

&

| |
6.9 a.5 1.8 1.5 2.0 2.5

b
q
»

—————  Muximmm of AF\{a, 04, 8) for 4 € [§, 5]
Value of A7y (ax, o, 7]

Maximmm of AT gpr{on,ax,82) for 8, € [0, 5]
Maximum of A7 ¢ay(on,ay, 0] for &y € [0,7]
Maximum of A oopelay, ax,da) for 8y € [0,x]

FIG. 6. Amplification factors as a function of Courant number
with a, =014, o, =0.2939, «, =0.5252, a, =1. Second-order space
approximation, x =0,
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FIG. 7. Amplification factors as a function of the wave number with
a,=14, 2, =014, a, =02939, g, =0.5252, o, = 1. Second-order space
approximation, x =0.

We compare the behavior of either the single-grid
and the multigrid amplification factors considered as a
function of the wave number with the optimal Courant
number value, or the derived quantities ./ #,(«,, 6,, 7} and
max o F, (o, 0,, 0,) for 8,e[r/2, n] for the single-grid

method and max .of Fyi{a,, 65, 8,) for 0,e[0, =] for the

multigrid methods (where “MG” designates GM, CM, or,
CCM as a function of the Courant number,

1}

)\ //

: i
1l
#

\Y

Maximum of 45, [oy, vy, By) Jor 8y € ()
Value of A7 x(ax, oy, 1}

Maximurn of A7 ug(ay, 04, ) for 8, € J0,7)
8 i 1 1 !

0.3 e e it P

a8

.38

- r\'-n_.-u”

Q.20

- —_—
& i @ —

— e — e

! — on
2.5

FIG. 8. Amplification factors as a function of Courant number with
ay, =01427, =z, =03026, =z, =05311, g, =} Second-order space
approximation, x =0.
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TABLE 1

Maximal Values of Amplification Factors for the Optimum Courant Number Value

O,=n max % max o Fou max & Fep max & Fooy
telr2.n]) OreD, r] thelr, x] R
o,,0,=1{22) 0.000 0978 (3998 0.774 0.869
oy, 05 =(23) 0.257 0.257 0428 0.287 0.581
a,, o, =124) 0.353 0.354 0.358 —_ —
%y 04 =(25) 0241 0.304 — 0.242 -
o, 0, =(26) 0456 D455 — — 0456

The obtained result is summarized in Table 1. We con-
sider the single-grid results (the first two lines of Table I) as
a reference and we note an improvement when using one
characteristic and one geometric operators (fourth line of
the Table I}).

The resulting curves are presented in Figs. 4, 6, § with
respect to the Courant number and in Fig. 5, 7,9 with
respect to the wave number, for the optimal Courant
number vaiue.

4. ADAPTATION TO THE TWO-DIMENSIONAL
NON-LINEAR CASE

En this section, we suggest a way to extend the previous
1D scalar linear analysis to a non-linear system in two
dimensions: the Euler equations.

0.98

- -

Values of A7 p{an,op,0h)
Values of A7 ca{cn,on, Bx)

—_

B.80

a7

a.68
—
—

0.32 a.ug

AR

B.28

\/“J\ A\

L L IS
3_' x By,

[N}

0.

a

win |
LS
L)

FIG. 9. Amplification factors as a function of the wave number
with o,=139, a, =0.1427, 2, =03026, , =0.53!1, «, =1. Second-
order space approximation, k =0.

4.1, Mathematical Modeling

We will present in this section the main features of a high
order approximation of the Euler equations, relying on an
upwind formulation on an unstructured mesh in conjunc-
tion with total variation diminushing {TVD) properties.

Let .7, be a triangulation of the computational domain
2 with boundary I We can write the Euler system in a
conservative form such as

oW
~a—+V F(W)=S§,

where S is a source term that is supposed to be equal to zero
on the fine grid.
The complete formulation can be found in [7] and uses
a Green formula,
Find W_e (¥, )™

such that VN, e .7,

oW,
L X dx o+ L%F(Wg)-ngida

£7]

+]  FW)npdo=[ S,dx  (7)
gy I Cey
R, =] S,dx+| F(W,)n,do
Ces acy,

AL AR

8Cgyn T

ﬂ'-,

F1G. 10. Cell C, of the dual mesh.
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whete ¥, = { W, e C%}; W, is linear on each triangie } and
R, denotes the residual. The cell C,, is defined for each ver-
tex N, €7, as the union of the subtriangles which have N,
as vertex and result from the subdivision of each triangle of
7, by means of the median planes as shown in Fig. 10. The
vectors n,, and n, designate outward normal vectors of
the cell C,, and the domain boundary I, respectively.

The scheme will be completely defined if we now specify
which approximation is used to compute the left-hand-side
integral in (27). In order to do this, the boundary éC,, of the
cell C, is split into panels 4C, , joining the segment
[N, N, 1to the centroids of the triangle having N, and N
as common vertices,

Let us give the notations:

dao;

8

FU(Wg)=F(Wg]-J a

d

A,.J,.(wg)=;ﬁ1?(wg)-jaC n, do
2y

P.(W,) such that

P;L(W,) A

p (W IP(W_)=A;(W,_)a diagonal matrix.

An upwinding is introduced in the evaluation of the
convection term through the numerical flux function @ of
a first-order accurate upwind scheme by

| FW,)mdo=H =@, (W, W,),
a

C“’u

where W, =W, (N, )and W =W (N ).

The numerical flux function used in this scheme is Osher’s
approximate Riemann solver [24] which has been chosen
because of its robustness and its parameter-free implemen-
tation. The numerical integration carried out with the
upwind scheme, as described previously, leads to an
approximation which is only first-order accurate. A second-

FIG. 11. Downstream and upstream triangles for the edge [N, N ]
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order accurate MUSCL-{ike [ 16] extension can be defined
without changing the approximation space

Find W e (¥,)" such that

[ Meger v By (28)
C,

& ot FeKiil

j F(W,) n, da=j S, dx,
Cy I CK;‘

where K(1)is the set of neighbours of vertex ¥, and H) =
D (W, W)

The arguments W, and W, are values at the interface
dC,, which have been interpolated by using upwind
gradients as described below,

We define the downstream and upstream triangles T,
and T, for each segment [N, N, ] as shown in Fig. 11. Let
the centered gradient be VW —Vng 75 where T/ is one
of the triangles having N, and N, as Vemces

A good procedure, in terms of accuracy, is to use limiters
on characteristic variables. We compute these variables by
the transformation taken at the segment’s midpoint. Ii we
denote by II; the eigenvector matrix corresponding to P,
(W, +W,_ )/2), then the values at the interface needed to
compute the flux H{? (which are just an extension of the 1D
case (10)) are given by

W, =W, + HULc!.,H;l

i— { .
( +"vw ).N&,N&,
where Le,;, Le,; are the diagonal limiting matrices intro-

duced to reduce numerical oscillations of the solution and
to provide some kind of monotonicity property. In all com-
putations, we use the Van Albada limiter [1] associated
with the Fromm scheme corresponding to =0, combining
monotonicity and second-order accuracy [28].

Finally, boundary integrals over " are computed in order
to take into account the physical boundary conditions.

5. CHARACTERISTIC MULTIGRID METHODS
FOR NON-LINEAR PROBLEMS

The main feature of multigrid methods in a context of
unstructured and unnested grids lies in the definition of
transfer operators, which are generally only based on
geometric principles. As it has been presented in Section 3,
the characteristic multigrid technique takes into account the
hyperbolicity of the problem into transfer operators too.

First, geometric operators will be described. Next, we will
suggest a way that would modily the definition of the
residual restriction operator I,,_ ,,.
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5.1. Geometric Transfer Operators in 2D

The grids are supposed to be independent from each
other, following [21]; we need information between two
consecutive levels: for each node N, e &, (resp. Nye ),
we should know which triangle T, (N, e, (resp.
T, (Ny)e F,) contains N, (resp. Ny} (Fig. 12).

We recall that the shape function 4 associated with a
node N € J, is a linear function on each triangle of 7, and
takes value 1 at node N, and 0 at every other node:

+ flow variable restriction operator I, __ ,,,

defl

WaNy) =1, o(W)(Ny)

3
= Z ‘/ifili{NH) wft(Nhk]!
k=1
where Nye 7, N, . Ny, and N, are the vertices of the
triangle T,(Ny) e 7,; and 4}, ¥ is the shape function
associated with the node N, fork=1, .., 3.

« correction prolongation operator 1,,,_ ,, -

3
(IH._.;, CH)(Nh) = Z */V‘H,((Nh) CH(NH;(},
k=1
where N, € 7,; Ny, Ny,, and N, are the vertices of the
triangle 7T,(N,)€ 7y, and A}, € ¥}, is the shape function
associated with the node N, . for k=1, .., 3.

» residual restriction operator I, ,,. Let us define the set
€(Ny)={N,e T, such that T,(N,) has Ny as vertex|.
Then the restricted residual at node N,e .7, is collected
from residuals at nodes N, € €, (Ny},

(ihy-aHRh)(NH]:' 2

N €{Ny)

AN RG(N,), (29}

N,

O nodes of Gy

nodes of Gy

th

FIG. 12. Transfer operators in 2D: (a) fine grid residual at node N, is
linearly distributed to coarse grid restricted residuals at nodes Ny, Ny,
Np,; (b) fine grid corrections at node Ny, is a linear interpolation of coarse
grid corrections at nodes Ny, , Ny, and N ; (¢) coarse grid flow variables
at node Ny, are a linear interpolation of fine grid flow variables at nodes
Np s Ny and Ny,
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where 4, € ¥7,; denotes the shape function associated with
the node N,,.
5.2. Characteristic Operator 1, _, ,, in 2D

Let us introduce the following notations: Let A,{W,) =
(didW) F(W,) -d be the jacobian matrix, in the unitary
direction d and P4W,) the corresponding eigenvector
matrix. We denote by A4 (W,)=diag(A;(W,)}_, 4 the
diagonal matrix

AW,y =P(W,) Ay(W,) P (W,)
with
ANW, ) =u-d—c¢

;‘i(wk) = )*13!(er) =u-d
AW, =u-d+e

(30)

where uis the speed vector and ¢ is the local speed of sound.
The definition of I, . ,, given by (29) can be rewritten as

(L n RN = 2

Nye € V)

o [PdH(Nhl(wh) Pd._HiN;i)(wh)]
X Rh(Nh)s

‘/VNH(NH)

(31}

where  d,(N,) represents the
NN /IN NG || (see Fig. 13).

Let Id, be the 4 x 4 identity matrix; we denote by

unitary  direction

Wy, (N =Ny, (N 1, = diag( va(Nh)).'z 1,..4

for N},E%},(NH)

then Eq. (31} reads:

(ihHH Rh)(NHJ: z

Npe GV}

X WNH(NI;) P;,{;v,,;(wh) Ru(N,).

P (W)
(32)

It appears that the matrix ¥, (N,), in (32), contains

Ni,

O nodes of G

A & nodes of Gy

12
oM
d; k
NH] NH:
FIG. 13. Operator 1, for characteristic multigrid in 2D,
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c

FIG. 14, Profile NACAQ012. Partial view of the three computational meshes: (a) First mesh, 100 nodes, 160 elements; (b} Second mesh, 1360 nodes,
2560 eiements; {c} Third mesh, 5280 nodes, 10,240 elements.
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FIG. 15. Profile NACAQ0M2, M, =2, a=10° Convergence history
versus the number of cycles: Curve 1, GM method; Curve 2, CM method.
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the interpolation weights in the direction d,(N,) of the
characteristic residual R,(N,) =P, v ,(W,) R,(N,) (we
recall that for the geometric operator, all the weights are
equal).

The point of the characteristic multigrid is to weigh each
characteristic component in an independent way, by using
characteristic directions. We consider that the Ith compo-
nent of R,(N,) oceurs if AL wivgt Wa) > 0. Consequently, an
expression of the modified matrix ¥, (&,) can be written
as

M Ng) 1 3 (W5 >0

0 otherwise (33)

@L,,(N,,}={

for N,e%,(Nyland =1, .., 4

However, conservation is lost with definition (33). As we
want to preserve it, the corresponding equation, to ensure
conservation per triangle,

3
Z J}'.:\"H.{(Nh)= 1 for 1=1,..,4, (34)

FIG. 16. Profile NACA0012, M, =2, « = 10°. Iso-pressure coefficient lines and distribution on the body: (4 =0.131).
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has to hold, where N, Ny, and N are the vertices of for N,e%,(N,) and /=1, .., 4, where ¢'(N,) results from

TN, i we denote by

3

PNI =Y ¥h, (N for I=1,.,4 (35)
k=1
then Eq.(34) can be fulfilled if the coefficients
(W, (N4))io 1,4 are rescaled by /(N,) (35), provided that
it should not be zero, for /=1, ..., 4. Finally, the complete
definition of operator I, ,, in the characteristic multigrid
context is given by

(Th N
W if ALH(M,](WA) >0
L and  ¢(N,)>0 N
N )= .
e P VAN S €
0 it 2v(Wi) <0
\ and fPI(Nh)>0

))»]

FIG. 17. Profile NACAQQL2, M _ =2, a=10° Iso-entropy lines:
{4 =0013).

(35} that uses (33}

6. NUMERICAL RESULTS

We will present a sct of two computations, applying the
methodology described below, to illustrate the capacities of
the new multigrid solver. The first application of the multi-
grid technique is the computation of the flow around a
NACAO0012 airfoil at a Mach number of 2 and an angle of
attack of 10°, The three computational meshes are displayed
in Fig. 14, the coarsest mesh contains 100 nodes and 160
clements; the finest one contains 5280 nodes and 10,240
elements. The residual history (in L,-norm) versus the
number of cycles of the GM and the CM methods using the
corresponding optimized coeflicients given by {24) and (25),
respectively, are depicted in Fig. 15. The GM method is not

FIG. 18. Profile NACA0012, M, =2, a=10° Iso-Mach number
lines: (4 =0.13).
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FIG. 20. Double ellipse, M, =8.15, «=30° Convergence history
versus the number of cycles.
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able to give a result for this test case. The convergence of
the CM method shows a decrease of residual by over eight
orders of magnitude in about 300 cycles. This demonstrates
the efficiency and reliability of this new multigrid solver. The
iso-pressure coefficient lines and the corresponding distribu-
tion on the body (obtained on the finest grid) are plotted in
Fig. 16. The iso-entropy lines displayed in Fig. 17 show the
accuracy of the scheme and the iso-Mach number lines in
Fig. 18 demonstrate the sharp capture of the shocks.

The next test case is the computation of the hypersonic
flow around a double ellipse at a Mach number of 8.15 and
an angle of attack of 30° in order to check the robustness
of the promising CM method. The sequence of three grids
are presented in Fig. 19. The coarsest mesh contains 4257
nodes and 8192 elements; the finest one contains 14,827
nodes and 28,938 elements. The convergence history (in
L.-norm} versus the number of cycles is displayed in Fig. 20
when using the full-muitigrid approach; the different con-
vergence rates show a behavior better than expected (inde-
pendent of the size of the finest mesh). The CM method has
successfully computed this hypersonic flowfield in a small
number of cycles. The iso-entropy lines and corresponding
distribution (Fig. 21) prove the quality and accuracy of the
unstructured grid solver. The iso-Mach number distribution
in Fig. 22 indicates that the canopy shock is a detached one
with a subsonic pocket.

(&

F1G. 21. Double eliipse, M, =8.15, a = 30°. Iso-entropy lines and distribution on the body: (4 =0.250),
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FIG, 22. Double ellipse, M, =8.15, a = 30°. Iso-Mach number lines and distribution on the body: {4 = 0.250).

7. CONCLUSION

The one-dimensional Fourier analysis of the complete
muitigrid algorithm on the linear advection equation has
clearly shown the advantages of the characteristic multigrid
method. This result is confirmed by the numerical
experiments performed with an unstructured multigrid
method for two-dimensional Euler flow computations. The
extension to 21D of the characteristic transfer operators has
allowed the computation of severe problems such as hyper-
sonic flows with strong detached shocks; this could not be
possibie with the classical approach.
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